Language:

2020年度 国際バイオ特論A (4062)

授業科目基本情報PDFダウンロード

科目区分 専門科目 教職科目 指定なし
単位数 1 選択・必修・自由 選択
授業形態 講義 主な使用言語 英語
開講時期 履修登録システム 【使用しない】
履修登録期間 履修取消期限

教育プログラム別の履修区分

プログラム名 IS CB BS BN MS CP DS
履修区分
コア科目
履修方法 ・修士論文研究又は特別課題研究を履修する場合は、基盤科目及び専門科目から12単位以上履修すること。
・課題研究を履修する場合は、基盤科目及び専門科目から14単位以上履修すること。

授業科目概要

担当責任教員 遠藤 求
担当教員 遠藤求、真木智子
教育目的/授業目標 海外から招聘した講師による英語での集中講義を通じて、特定の専門分野の基礎的な知識および最先端の研究内容について学ぶ。積極的に質問を行い議論に参加することを通して科学の現場での英語でのコミュニケーション能力や国際感覚の育成を図る。
授業概要/指導方針 講義に内容に関連する英語論文を事前に読解、学習し、キーワードやキーコンセプトを理解したうえで講義に臨ませる。少人数クラスのゼミ形式の講義と議論に対して主体的で積極的な取り組みを奨励する。2020年度はオンライン授業とする。

クラス情報



表示可能なデータがありません。

授業計画

[1限目 9:20-10:50] [2限目 11:00-12:30] [3限目 13:30-15:00] [4限目 15:10-16:40] [5限目 16:50-18:20] [6限目 18:30-20:00]
回数 日付 [時間] 担当教員 テーマ 内容
1 12/8 [1] Philipp Zerbe Lecture 1. Introduction to plant specialized metabolism. Plant specialized metabolism is critical to mediate plant-environment interactions and enable plants to adapt to specific ecological niches. As a consequence, plant specialized metabolites are extremely diverse and often occur in only individual plant families or species. In this lecture, I will begin by comparing general and specialized metabolism in plants, then cover major specialized metabolite groups including their biosynthesis, distribution, and physiological function.
2 12/8 [2] Philipp Zerbe Lecture 2. Mass spectrometry.
Qualitative and quantitative metabolomics enable the study of metabolism across different organisms, tissues and even cells. Mass spectrometry approaches have made a major impact on the analysis of plant metabolism. In this lecture, I will cover the basic concepts of mass spectrometry, different liquid- and gas-chromatography applications, and how these can be used to help in investigating plant specialized metabolism.
3 12/9 [1] Philipp Zerbe Lecture 3. Functional genomics for studying plant metabolism.
The diversity and often species-specific nature of plant specialized metabolism limits the use of model systems for the analysis of many pathways and metabolite groups. At the same time, plant species producing metabolites of interest often lack genetic, genomic and other investigative resources. By example of select plant species and metabolite classes, I will discuss how functional genomics approaches can be combined with combinatorial pathway reconstruction in microbial and plant-based platforms to identify and characterize the biosynthesis, regulation and function of plant specialized metabolism in non-model systems and how this compares to the study of model species.
4 12/9 [2] Philipp Zerbe Investigating the Metabolic Diversity of Plant Terpenoids Toward Biotechnology Applications

Plants are nature’s master chemists; they deploy complex networks of specialized metabolites to interact with other organisms and cope with environmental challenges. Among these metabolites, terpenes encompass the largest class with critical functions in plant development, chemical ecology and adaptation. These various terpenoid bioactivities also offer a rich source for medicinal, agricultural and other biotechnology applications. A deeper knowledge of the biosynthesis, diversity and distribution of plant terpenoids can guide the discovery of natural products and pathways, unveil their role in plant-environment interactions, and provide a toolbox for bioproduct manufacture. We established deep transcriptome resources for more than a dozen medicinal, food and bioenergy plants that produce common and unique terpenoids. By integrating a custom gene discovery platform with metabolite profiling and multi-gene co-expression analyses for efficient cross validation of enzyme functions, we identified numerous novel terpene synthases and cytochrome P450 monooxygenases, as key enzymes in generating terpenoid metabolic diversity. We will report on the discovery of unusual terpene synthases en route to new drug lead compounds, as well as previously unrecognized terpenoid pathways in the food and bioenergy crops maize and switchgrass that contribute to the defense against biotic and abiotic stressors. We show that terpenoid biosynthetic enzymes form modular pathway networks, where catalytically distinct enzyme modules may function in different combinations to enhance chemical diversity. Following nature’s lead, we combine protein and pathway engineering to develop proof-of-concept microbial and plant-based platforms for producing bioactive terpenoids via “Plug & Play” combinatorial expression of pathway genes from different species.
5 12/10 [1]
6 12/10 [2]
7 12/11 [1]
8 12/11 [2]

授業日程

[1限目 9:20-10:50] [2限目 11:00-12:30] [3限目 13:30-15:00] [4限目 15:10-16:40] [5限目 16:50-18:20] [6限目 18:30-20:00]
回数 日付 時間 講義室 備考
1 12/8 1 L12(BS)
2 12/8 2 L12(BS)
3 12/9 1 L12(BS)
4 12/9 2 L12(BS)
5 12/10 1 L12(BS)
6 12/10 2 L12(BS)
7 12/11 1 L12(BS)
8 12/11 2 L12(BS)

テキスト・参考書

テキスト 講師よりあらかじめ指定される学術論文4-5報
参考書 特になし

その他

履修条件 講師が指定する論文等を講義前に読解・学習しておくこと。
オフィスアワー Eメールで連絡の上、日時を決める。
連絡先:smaki@bs.naist.jp
成績評価の方法と基準 ・5段階(秀・優・良・可・不可)で評価する。
・講義への取り組み(70%)および受講後のレポート(30%)で評価する。
・当該分野の基本概念と研究アプローチの理解、および英語による論理的な議論の技能を基準とする。
関連科目 特になし
関連学位 バイオサイエンス
注意事項 集中講義の日程、テーマ、および内容については、当該年度に海外から招聘する講師と打ち合わせの上、Eメール等で告知する。2020年度はオンライン授業とする。

授業関連URL



表示可能なデータがありません。

配布資料



表示可能なデータがありません。